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observation that water travels through these channels at bUIkindividual signals at 300 and 173 K, respectively. Assignment of deuterated

diffusion rate$ is, therefore, still puzzling. It seems that a delicate \yater, alcoholic and acidic functions, as well as relative intensity percentages
balance of polar and nonpolar environments leading to a special are depicted. The incorporation of a structural water signal to the spectrum
arrangement of the water molecules is a prerequisite. at low temperatures produces an increase in the alcoholic OD signal

Much of the progress achieved in our understanding of func- Intensity:2
tionalized water-filled pores has come from theoretical stutlies.
Furthermore, numerous experimental self-assembly processes of
organic and inorganic compounds induced by water have been HO
reportec® In these materials, water molecules generally form well-
defined clusters stabilized by H-bonding to the inner surface of
the cavity created by the hosHowever, water molecules confined 1, R=CH,.CH,
in the clefts of biological macromolecules or in cavities near 2,R=CH,CH=CH,
surfaces exposed to nonpolar moieties are presumed to be less
orderedt® We reasoned that, in the self-assembly processes of host
guest systems, water molecules may play two different roles: either
an active role in the assembly of the host structure or simply filling
the voids left by the host aggregate. Knowledge of both types of
water molecules is therefore important in order to understand the
packing and function of water pores. We have designed, synthe- em
sized, and studied in the solid state porous organic self-assemblies =) -

Sator molecules exhi diferent dynaimics. Furihermore, we foun "5, Gl Stuciur o)2:2440 (obaine fom HOICC.Fron

' and side views of the open pore. Compouhth capped-stick, water in
that the decrease of the pore diameter induces a substantiakpace-filling representation: structural water (blue), clusters (red).
structuring of confined water molecules.

In a model of a water pore with a variable inner diameter between like water!3 We also show through direct evidence that these pores
5.9 and 9.4 A, created by crystallization from@®{CCl, of the can be reversibly filled with water from the gas phase and that the
organic monomet, 1! we show through TGA and DSC studies that 2/1 water/monomer ratio is the minimum essential to maintain the
the water/monomer ratio remains at 2/1 indefinitely, even when in Structure. Thus, DSC studies of a new isomorphic pore formed by
contact with air. Two types of water molecules can be distinguished Monomers of homologu@* also show a 2/1 water/monomer
by staticZH NMR (Figure 1). One type, located by X-ray diffraction relationship. In this new pore, X-ray crystallographic dagecount
at specific sites, remains at the inner surface of the pore forming Not only for the location of the water molecules H-bonded to the
part of the H-bonding pattern that maintains the whole strudfure, POre surface but also for the clusters formed by water inside the
A second type of water molecule forms clusters or mini droplets POré, which necessarily have to experience a limitation in their
in the pore interior and can only be partially observed by X-ray diffusion rate because of the narrower diameter (Figure 2). These
diffraction 11> However, combined studies 84, 2H MAS, and static water molecules form discrete {8)s octahedral clusters that

2H NMR show that this is a highly mobile fraction of almost liquid- expand preferentially to the greatest possible diameter inside the
pore. X-ray results give average-@ bond distances for the cage

hexamer of 2.768(4) and 2.717(6) A at 115 and 170 K, respectively,
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